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exactly integrable (1 + 1)-dimensional gas of impenetrable 
fermions 
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Department of Physics, New York University, 4 Washington Place, New York, NY 10003, 
USA 

Received 9 November 1990 

Ahtract. We show that the finite-temperature equal-time field COITCI~IOIS  of the exactly 
integrable (I+l)-dimensional gas of impenetrable fermions in a magnetic field can be 
expressed as the first Fredholm minor of a completely integrable linear operator. This 
result enabler us to derive differentia! equations for quantum carrelators and to obtain 
analytical formulae for long-distance asymptatics. In panicular, a formula for correlation 
length as a function of temperature and magnetic field is presented. Our analysis reveals 
:'.e p:e:e-ce a f : ? ~  !esg:h ~ca!es, &ich :epa:a:~ ;boz-di;:nxce, iate:-edia:e and ex:xms 
asymptotic domains. T h e  importance o f  the cross-over region is emphasized. 

1. Introduction 

There has been a resurgence of interest lately in the field of (1  + I)-dimensional exactly 
ix!egrab!e -ode!. (EIM) ,  fo!!awixg the discove:;. of ccme:cus coxxectioxs be:weex 
this field and other branches of mathematical physics. The theory of knots and links, 
quantum groups, conformal field theory and two-dimensional gravity are just a few 
of the recent activities closely related to the analysis of Yang-Baxter algebra which 
emerged in E I M  studies. 

The quantum inverse scattering method (QISM)  [ l ]  appears to be the most universal 

the exact eigenstates of the Hamiltonian and for calculating S-matrices. Recently, 
important steps towards an eventual solution of the Green function problem by means 
of the QISM were taken by Smimov [2] and Its er nl  [3]. A non-trivial generalization 
of Karowsky's early ideas [4] enabled Smirnov [2] to calculate various form factors 
of Thirring, sine-Gordon and u-models. By summing up products of these form factors 
one might hope to obtain convergent expansions for multipoint Green functions. In 
[3] Its et al deal with Fredholm quantities which arise in the calculation of quantum 
correlators of the impenetrable Bose gas. They show that Green functions for this 
model satisfy certain differential equations, and introduce the classical inverse scattering 
method (CISM)  [SI to analyse large-distance asymptotics. 

In this paper, inspired by the progress made in [3], we return to our investigation 
[6] of quantum correlators of the exactly integrable two-component Fermi gas, also 
known as the fermionic nonlinear Schrodinger model (FNL).  Its second quantized 
Hamiltonian is 

too! for the study Q f Z  wide &ss O f E ! M ,  prnviding a genera! technique for cons!rurting 

m 

H=I_mdx{a,~'J,9+g:9'99t9:-~~'~-B9tu~9} (1.1) 

0?05-44?0!0!!97!5"3+!"0?.50 @ I!??! l op  p;b!ii'.ing Ltd !543 
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where g > 0 (repulsive interaction) is the coupling constant, h > O  is the chemical 
potential, B is the magnetic field and u3 is the third component of the Pauli spin 
matrices. The field operator 

has two spin components which satisfy the equal-time anticommutation relations 

The eigenvalue problem for this model was solved by Gaudin [7] and Yang [SI by 
means of the so-called nested Bethe ansatz technique. Following it up, Lai [ 9 ]  studied 
the thermodynamics of the model along the lines of [lo]. The QISM analysis of the 
FNL was initiated by F'u and Zhao [ll], who calculated commutation relations between 
various scattering-data operators and derived quantum Gelfand-Levitan equation for 
fields +,. In [6] Berkovich and Lowenstein studied field correlators of the FNL in the 
important case of impenetrable fermions (g = m). It was proved there that two-point 
equal-time finite-temperature ( T )  correlators ( + ~ ( X ) + , ( O ) ) ~ ~ , + ~  can be representated 
as the first Fredholm minors of a linear integral operator associated with the kernel 

In the zero-temperature limit, we expressed this first Fredholm minor in terms of the 
solution of the Painleve- V differential equation and obtained an analytical formula 
for the infrared asymptotics. The purpose of this paper is to extend this analysis to 
the more general case of non-zero temperature and magnetic field. 

The remainder of this paper is organized as follows. In section 2, we derive an 
expression for the fields $, in terms of reflection R-operators, and then employ the 
temperature Green function technique, supplemented by an infrared cut-off procedure, 
LV uuuiii  ULS r i ~ u i i u i m  iiiinur rcprcxnrarrurr U L  LILC rwu-pulrlr Cqudl-LlmC wrrcudior. 
We finish section 2 with the analysis of the limiting case T=O, B=O. Section 3 is 
dedicated to the general case T # 0, B # 0. There we derive differential equations for 
quantum correlators. In section 4 we made use of the CISM to obtain analytical formulae 
for the infrared behaviour of the Green functions. We conclude with some remarks 
about possible generalizations. 

& ^  -L.-:- .I.̂  _.̂ >I. -,-. -:_.. -.-.... .P .I.̂ I _.:_. 1 .:... .....,.A.- 

2. The Green function as a first Fredholm minor 

Our principal goal here is to calculate the two-point equal-time correlation function 

in this infinite coupling (g = m) limit. The basic strategy of our QISM approach is to 
represent $;Jli as a functional of the so-called reflection R j ( p ) ,  Rj(p)  operators and 
then use this functional to compute expectation values. The properties of reflection 
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operators 1111 which are relevant for the present investigation are 

R C ( P I ) R J P J  =-Ri(pJRj(pi)  

i, j, k 3 *1 
R ~ ( P I ) R J ( P ~ ) = S , ( ~ . ~ ~ ~ ( P , - P ~ ) - ~  RL ( P ~ ) & ( P I ) )  (2.2) 

k 

(1 I I  
(L.21 

[ H ,  Rf(p) ]  = ( p * -  h -iB)RT(p) [ [ P ,  R?(p)l  =pRT(p) 
[N, R:(p)l= Rf(p) 
[s, R:(p)l =fiRi(p) 

where P, N, S are momentum, particle number and spin operators, respectively. The 
eigenstates of H, P, N, S generated by the reflection opegators are quite simple: 

(2.4) 

PN >PN--I >.  . .'PI. 

Here (0) is defined by 

Jrt(x)lO) = R~(P)/O) =O. (2.5) 

The state (2.4) may be interpreted as a delta-function normalized N-particle in-state 
with energy X i (  pj- h - j , B ) ,  momentum X pi and spin f X j < .  Fourier transforming the 
operators Rj( p ) ,  

gj (x)=-  27r ' 1  dp e'"R,(p) (2.6) 

one finds 

Ej(X)kj(Y) = -k<(y)kj(x)  
(2.7) ki(x)kJ(Y) = 8$[8(X-y) -E kL(y)kk(x)]. 

k 

In  analogy with (2.4), k ] ( x )  operators can be employed to construct the complete set 
of properly normalized in-states: 

$C(xd. .  . ! b ; w ( x N ) l o ) = ~ ~ ~ ( x J ~ ~ ~  G(XN)IO) 
12.8) 

x, > x 2 > .  . . >.XN.  

-.. we can now move on to find a representation of the fieid as a power series in resection 
operators. The procedure, proposed in [6], suggests the following ansae: 

+bl(x)= 1 1 (-I)"-'[ 71 " 

dz, B ( x > r , > .  . .> z m ) k ; , ( z , ) .  . . E;#(&,,) 
m = o  I=0 i - l  

x kjn,(zm). . . k j , * , ( z , + , ) k ~ ( z j ) ~ j , ( z , - , ) .  . . f i j 2 ( z l ) E j , ( x ) .  (2.9) 

In  the formula above, summation over repeated spin indices is understood. To verify 
(2.9), we compare the action of the LHS of (2.9) on the LHS of (2.8) with that of the 
RHS of (2.9) on the RHS of (2.8). Making use of the commutation relations (2.2) and 
(1.2), we conclude after some tedious calculations that these two actions are, in fact, 



1546 A Berkovich 

identical. Since states (2.8) form a complete orthornormal basis, this result proves that 
the ansae (2.9) is, indeed, the correct representation of the field &. 

The reordering theorem 

proven in [ 6 ] ,  enables us to obtain for the bilocal product of fields 

(2.10) 

x i , ( z l ) E j ! ( Z l - J . .  E;2(zl)i,(Y) x > y. (2.11) 

If we now expand $i(x) inside (2.11) using the ansatz (2.9), we will obtain with the 
help of (2.6) and (2.7) the representation for $:(x)$,(y)(x>y) in terms of normal- 
ordered products of Rj(p), RJ(p) operators: 

exp(i X;"=, (k, - p,)y +i  XY=T+, (k, - p,)x + ikoy - ipOx) 
X (2.rr)z(m+A+') n m + " .  , = I  i(k,-p,-iE) 

xR;,(po). . . R~(PI--I)R:(PI).  . . R ~ ( p ~ + i ) ~ ~ ~ + i + , ( P ~ + i + , )  
X . .  . R , , + , ( P ~ + ~ ) R , - * ~ ( ~ , + A ) .  . . Rm+;+,(km+i+i) 

xRi(km+r) ,  . . Ri(kr)R,(k,-i). . . R,,(ko)+AS. 

t 

(2.12) 

Here AS designates contributions of R', R-operator products with asymmetric spin 
indices. The explicit expression for AS is not important because its expectation values 
vanish and thus play no role in Green function calculations. 

Before we proceed further, let us comment that the QISM formalism we are using 
requires that our fields he defined over the entire real line, with boundary conditions 
ai ii;fifi$y. V{e ;h i ie f~ ie  q j e c ;  to efiicinter inf:a:ed dkygences whi!e ::gag ?e 
compute traces in (2.1). This infrared problem can be avoided by using the 'infinitesimal 
boost' regularization procedure 1121: 

GT,h ,B(~  -y) = limTr{$:(x)$l(y) e-H1T e-'qM } 
v-0 

(2.13) 

Equipped with equations (2.12) and (2.13) we are now in a position to calculate 
GT,.h,B(~ -y)  in a term-by-term fashion, provided that we know how to compute traces 
or normal-ordered products of reflection operators. The trivial generalization of the 
trace formula, proved in [6], yields 

- H I T  -IqM 
Tr(R:,(pO). . . R~m(pm)R;~ , (k , J . .  . R d k J  e e ) 
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Finally, substituting (2.12) into (2.13) and making use of the trace formula (2.14) and 
commutation relations (2.2), we obtain after some lengthy calculations 

(2.15) 

where 

The Green function (2.1) is thus essentially a Fredholm minor D,(A, x - y )  associated 
with the integral kernel K ( x - y ) .  By Kramer's rule, DI(A, x - y )  can be written as the 
product 

Di(A, x - ~ ) = R ( A , x - y ) D ( A , x - y )  (2.16) 

where the resolvent R(A, x - y )  satisfies the integral equations 

( I  - A R ) R ( A ,  x - ~ ) = A K ( x - ~ )  (2.17) 

and D(A, x - y )  is the Fredholm determinant, 

= det(1 - A i ) .  (2.18) 

At zero temperature and zero magnetic field, the kernel (2.15) reduces to 

and we have for the correlator 

(2.19) 

(2.20) 
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Jimbo et al [13] have shown that the Fredholm quantities of the integral operator 
associated with the kernal (2.19) may be expressed in terms of solutions +(A,  t )  of the 
Painleve- V differential equation 

1 -a<+ a:+ =[(a,+)Z-l] cot ++- (2.21) 
t 

with the boundary conditions for 1 tending to zero 

@(I, A ) =  i -  Ai’+. , . . 
In particular, the resolvent R(l/27r, 1 )  is 

while D(1/27r, t )  satisfies 

a In D(l/27r, I )  - 11 - 
at 4 sin2 + 

(2.22) 

(2.233) 

(2.24) 

Equations (2.21)-(2.24) specify the correlator (2.20) completely. 
Performing the asymptotic analysis of (2.21) along the lines of [12] and [I41 yields 

+ O ( i )  (2.25) 
2k sin[2(t- to- k In t)]+3k2 +( L, I )  = t - k In t - to + 

257 41 

where k, to are integration constants: 

(2.26) 
1 

k = - l n 2  
7r 

Here r ( l  +ik/2) is the gamma function. Inserting the expansion (2.25) into (2.23) and 
(2.24) and integrating we obtain 

(2.28) 
k2 
2 2 

CO=- (1 +In 2) -2k Im( In I-( 1 + i  i)) + 2 Im( jok dv In r(1 + i  ’)). 
We now go on to the analysis of the finite-temperature and magnetic field case. 

3. Partial differential equations for the quantum correlator 

In this section we derive a closed form expression for the non-zero temperature and 
magnetic field two-point correlator (2.15) in terms of the solutions to the partial 
differential equations which generalize the Painleve-V equation (2.21). To this end, we 
employ the strategy developed in [3]. 

Introducing rescaled variables 
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and making use of the translational invariance of the FNL, we can rewrite (2.15) as 

G r ~ ( 2 ,  6 ) = n e 2 ' R ( 2 ,  6)D(2, 6) (3.2) 
where D(2, 6)(R(Z, 6)) is the Fredholm determinant (resolvent) of the linear integral 
operator I? with difference kernel 

(3.3) 
1 m 

K ( 2 , - c 2 )  = f  dpp(p)e'P(inrii) L P ( P )  =; eD'+r+cosh 

For the resolvent R(2,  6) we have 

(3.4) 

(3.5) 

- B  e 
211 

A = -  (3.7) 

and fi is a linear operator, defined by its action on any function @(p)  as follows: 

Analogously, for the Fredholm determinant D(2,  6), we can obtain 

D(2 , , )=det ( l -AR)=det ( l -A~) .  (3.9) 
Taking advantage of the famous Fredholm identity 

A h  
Indet(1-Ak)=-  h = I  -Tr(fi*) k 

and of the definitions (3.6) and (3.8), we have for the derivative J,(ln D(2, 6)) 

(3.10) 

= - A  Tr(f+E_)=-A dpf+(p)E-(p)=-V+-(t, 6). (3.11) I 
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Similar, although somewhat lengthier calculations for the derivative J i  In D(2, 6) yield 

Js ln  D(2, ~ ) = - ~ J , - V + _ + f ( J r V + _ ) 2 - f ( a ~ V + + ) 2 ,  (3.12) 
Here V*,J2, i) functions are defined as follows: 

m m 

V+-=A [--dpf+(p)E-(p)= V-+=A dpf-(p)E+(p) 

V++= A 1 dpf+(p)E+(p) = V-- = A [ dpf-(p)E-(p). 
(3.13) 

L 
m m 

-m -m 

Finally, collecting the results (3.2), (3.4) and (3.11), we obtain the representation for 
the field correlator (2.1) in terms of the potentials V+,*: 

(3.14) 

We now turn to the derivation of partial differential equations for the temperature and 
magnetic field-dependent correlation function. To this end, we introduce the two- 
component vector function 

(3.15) 

and apply operators J, and (2pJ,-+J,) to equation (3.6) to arrive at 

J ~ F = ( ~ ~ V ~ + ~ , V + + ) F =  i~ 
(2par+J,)F = [i(x -arV++)u3 -(arV++)m2]F = f i F .  

(3.16) 

The i, fi matrices constitute the famous Lax pair, with p playing the role of spectral 
parameter. The compatibility (flatness) condition for the overconstrained system (3.16) 

(3.17) [J i - f ,  2pJr+Jp -if] = 0 

leads to the following nonlinear differential equations for potentials V+,+: 

(3.18) 

The functions V++ and V+- are completely specified by (3.18) along with the boundary 
conditions 

V++(2, h -* -a)) = 0 V+-(O, 6 )  = J- Q(P, 6 )  dp  
m 

which follows from the series expression (3.4). 

in i 3 j  for the impeneirabie bosons, oniy in i'ne subsiiiuiion 
Remarkably, formulae (3.18) and (3.19) differ from analogous formulae, obtained 

(3.20) 
2 

27r 2 7r 

- I  
( A P ) ~ = -  (' -eP'-' +cosh E) + ( A p ) ,  =- (ep*-r+l)- l .  

Nevertheless, given the sensitivity of the differential equations (3.18) to the initial data, 
this difference has non-trivial consequences. 
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The results (3.18) and (3.19), and (3.14), enables us to obtain various asymptotic 
expansions for the field correlator (2.1). The equations (3.18) and (3.19) are particularly 
well suited to study the short distance asymptotics (x+O) and to construct the low- 
density expansion ( t +  -m). The most interesting problem from the physical point of 
view is the long distance asymptotics ( x +  m). To be able to make use of the partial 
differential equations (3.18) in this case, we have to impose boundary conditions at 
infinity. In other words, one has to have the main term of long-distance asymptotics 
of (2.1) from the start. This vital piece of information can be obtained by using the 
matrix Riemann problem (MRP) of the CISM [SI for the classical exactly integrable 
system (3.16). 

Let us introduce two 2 x 2 matrix-valued functions x*( p )  of complex argument p.  
which solve the Riemann problem, 

x - ( p ) = x + ( p ) G ( p )  ( Imp=O) det x*( p )  # 0 (3.21) 

with the usual normalization 

(3.22) 

as IpI +CO. The functions x ' (p )  and x-(  p )  may be analytically extended into the upper 
and lower half-planes, respectively. The conjugating matrix G( p )  here is 

To show that the M R P  (3.21) is equivalent to the integral equation 

for F ( p ) ,  we observe that the singular integral equation 

(3.23) 

(3.24) 

(3.25) 

for this problem has the solution 

Then it is easy to verify the identity 

(3.27) 

which establishes the connection between the M R P  (3.21) and the integral equation 
(3.24). Formula (3.26) allows us to obtain the potentials V,, and V+- by taking the 
p + CO limit of the ,y'( p)-function: 

lim 2p[ r -x+(  p ) ]  = u2 V+++ig, V++. (3.28) 
P-" 
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Thus, we see that the asymptotic behaviour of the potentials V+,* and the field correlator 
(3.2) can be understood in terms of the asymptotical properties of the matrix-valued 
function ~ ( p ) .  Fortunately, these properties are studied in great detail [5]. 

4. Asymptotics 

I" !hi. sectian, we derive the m2in terms of the EsymptO!ks E! pa!PE!i.!S v-*, v+- 
and of the field correlator (3.2). The complete asymptotical expansion can then be 
obtained from the partial differential equations (3.18). To make contact with the 
extremely useful results of [5], we transform the conjugating matrix G ( p )  (3.23) into 
the regular one, with diagonal matrix elements equal to unity. To this end, let US 

introduce the transformation 

where a+(p) ,  p'(p) and a-(p) ,  p-(p) are some holomorhpic functions for l m p z o  
and I m p  < 0, respectively, and they tend to unity in the limit 1pl-t 00. The MRP (3.21) 
can now be rewritten as 

i - ( p )  = i + ( p ) B ( p ) ( I m p  =o) 

I 

Imposing the requirement that diagonal matrix elements of G(p )  are equal to one, we 
have 

It is easy to verify that the functions 

(4.3a) 

(4.3b) 

(4.4) 

are solutions of the corresponding scalar Riemann problems (4.3a) and (4.3b). They 
also satisfy normalization conditions at infinity: 

lim a ' ( p ) =  lim p * ( p ) = l .  (4.5) 
I+== L1-m 

Inserting (4.3) into (4.2). we finally have 

, I = 1 ,  Imp=O (4.6) 
1 E b y p )  

1 
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with functions b(p), b*(p) given by 

We now list the properties of the MRP (4.2), proven in [SI, which are relevant to the 
present investigation: 

(i) The asymptotic behaviour of d:!(p) for real p9 as x +  m, 

where a - ' ( p )  (the transmission coefficient) is given by 

Note that since 6 =  1, there are no Blaschke factors in the formula above. 
Taking into account (4.4), we have for a - ' ( p ) :  

(ii) The classical counterpart of the expansion (2.9) is 

v++(a) = r (a )+0(r2(2) ) ,  

Here the reflection coefficient r(x) is defined as 

Making use of (4.7), (4.9) and (4.3b), we have 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

From (3.28). (4.1), (4.4), (4.8) and (4.10) it follows that the main term in the long. 
distance asymptotics of potential V+_(x)  can be represented as 

dpIn(l-wAp(p)). (4.14) 

To obtain a similar expression for the potential V++(x), let us observe that the 
integration contour in the formula (4.13) can be shifted in the upper half-plane and 
the integral, therefore, can be replaced by the sum 

Here p i s ,  defined as zeros of the function (ep'-'+eE)), are 

J z p x  = {[ (b+  6)2+ r2( 2k + 1)2]1'2 + (b+  E)]1/2 

+i{[(b+B)'+lr2(2k+ 1)~1' /~-(b+6)}' /* .  (4.16) 
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Clearly, it is contributions due to the roots po, -p$ that will determine the main term 
in the asymptotic expansion for r ( 2 )  as 2+m. Thus, we have for the potential V++(f)  
(4.11): 

v++(~) = r(2)+~(e-41'mpau'i 1 

(4.17) 

This concludes our derivation of the main terms (4.14) and (4.17) in the asymptotic 
expansions for the potentials V++,  V++,  Let us now apply these results to get the 
asymptotics ofln D(2, h). Fromequations (3.11), (3.12), (4.14) and (4.17)it followsthat 

I n D ( i + m , i ) = - . ? u ( i ) + f  dy(J,u(y))2+lnC,.  (4.18) 

Here 

1 [ + 2 cosh E] 
u ( y ) = -  d p l n  + e#  

Tr -m 

and C ,  is some numerical constant. 
Finally, we have for the two-point field correlator (3.2) 

where 

exp(-ZB/T) 
x l n  I +  ( exp[(p2- h - E ) /  Ti + 1 

(4.19) 

(4.20) 

(4.21a) 

( 4 . 2 1 ~ )  

and 

p -- 1 {[( h + T ~ ~ T ~ ] ~ ' ~ +  ( h  + (4.21d) ' -a  
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Formula (4.21~) gives the temperature and magnetic field dependence of the correlation 
length of impenetrable fermions. In the limit of small temperature we have 

TI B 
T 
B 

In-’(l h + B > O ,  T+O,-=finite 

h + B < O ,  T-t 0, -=finite. 
(4.22) 

Jh+B T 

In the high-temperature limit the correlation length becomes 

(4.23) 

In order to find the scale at which the asymptotics (4.20) sets in, let us recall that in 
deriving (4.17) we kept only the first term and neglected the second one in the expansion. 
This is a valid procedure, provided that 

if a T G <  ( h  + B )  1 !-&Impl if h + B s  TIT@.  

x - y > > x , =  (4.24) 

In general, the two scales x,, and 6 are quite different. Indeed, let us consider the B =0, 
T<< h case. From (4.21d) and (4.22) it follows that 

(4.25) 

Before we move on, let us point out that the simple presence of the two original scale 
parameters A, T does not automatically imply that the two scales (, xo, defining three 
different regions 

(I) O S x - y < < &  (short distance) 

(11) x - y < <  x,, (intermediate domain) (4.26) 

(111) x,<< x -y  (long distance) 

would remerge in the analysis of Green function behaviour. The formula (4.25) suggests 
that asymptotic domain I11 shrinks to zero as T + 0. If one, nevertheless, tries to impose 
the T+O limit in (4.20) and (4.21), one finds that the phase (4.216) blows up: 

h 
$( T-t 0) - In ---+ m, T T - 0  

(4.27) 

Miraculously, the formula for the correlation length (4.21~) survives this limiting 
procedure to yield the correct result: 

(4.28) 

As T tend sto zero, we may interpret the result (2.27) as a formula for the intermediate 
asymptotics with domain of validity 11. The cross-over region (x -xo), which smoothly 
connects the intermediate I1 and extreme asymptotic 111 domains, is the most difficult 
to analyse. Note now that the two-point field correlator becomes very small at distances 
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x >> xo. The cross-over region thus contains the bulk of information about the Green 
function, where this function is significantly different from zero. As a final remark, we 
comment that this information can be exploited to determine the overall constant C,  
in the formula (4.18). The author will report on some results pertaining to the cross-over 
behaviour in a future publication. 

5. Concluding remarks 

We anticipate it will be straightforward to calculate time-dependent multipoint corre- 
lators for the impenetrable fermions using expansion (2.9) as a convenient starting 
point. Such a calculation is presently underway, as is an attempt to extend our treatment 
to the case of the most general matrix NLM, describing a mixture of fermions and 
bosons, interacting via a (infinite) delta-function potentiai. the generalization to the 
finite-coupling case will be much more difficult, since a non-trivial modification of the 
Fredholm determinant representation must he found before any further progress can 
be made. As far as application of the CISM to analysis of infrared asymptotics is 
concerned, we believe that the most stubborn unresolved problem is that of the 
undetermined constant C, (4.18). Note that even in the much simpler case of the 
Painleve-V equation ((2.21) and (2.22)) (T=O) this problem is no! solved [15]. 
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